Novel computational methods towards understanding nucleic acid – protein interactions

  Abstract:

  Biological molecules perform their functions through interaction with other molecules. Nucleic acid (DNA and RNA) – protein interaction is behind the majority of biological processes, such as DNA replication, transcription, post-transcription regulation, and translation. In this talk, I will introduce our work on developing two novel computational methods towards understanding nucleic acid – protein interactions. The first one is a structural alignment method, PROSTA-inter, that automatically determines and aligns interaction interfaces between two arbitrary types of complex structures to detect their structural similarity. The second one is a deep learning-based computational framework, NucleicNet, that predicts the binding specificity of different RNA constituents on the protein surface, based only on the structural information of the protein.

  Bio:

  Dr. Xin Gao is an associate professor of computer science in the Computer, Electrical and Mathematical Sciences and Engineering Division at King Abdullah University of Science and Technology (KAUST), Saudi Arabia. He is also a PI in the Computational Bioscience Research Center at KAUST and an adjunct faculty member at David R. Cheriton School of Computer Science at University of Waterloo, Canada. Prior to joining KAUST, he was a Lane Fellow at Lane Center for Computational Biology in School of Computer Science at Carnegie Mellon University, U.S.. He earned his bachelor degree in Computer Science in 2004 from Computer Science and Technology Department at Tsinghua University, China, and his Ph.D. degree in Computer Science in 2009 from David R. Cheriton School of Computer Science at University of Waterloo, Canada.

  Dr. Gao’s research interest lies at the intersection between computer science and biology. In the field of computer science, he is interested in developing machine learning theories and methodologies. In the field of bioinformatics, he group works on building computational models, developing machine learning techniques, and designing efficient and effective algorithms, to tackle key open problems along the path from biological sequence analysis, to 3D structure determination, to function annotation, and to understanding and controlling molecular behaviors in complex biological networks. He has co-authored more than 170 research articles in the fields of bioinformatics and machine learning.

附件:
凯时中秋优惠 太阳城娱乐返点 太阳城官方游戏 查晓游棋牌 浩博娱乐城线上开户
申博娱乐百家乐 渮博真人直营网 88棋牌洗码 外围网站让球玩法 澳门太阳城138娱乐网
世博国际娱乐骰宝 太阳城网站登录 威尼斯人app注册 澳门威尼斯人登入注册 金沙游戏对战
申博太阳城注册开户 www.sbc188.com 澳门太阳城美女荷官 必威摇钱树 浩博娱乐官网